VoxDevLits are wiki-inspired literature reviews that aim to summarise the evidence base on narrowly defined topics related to development economics. Each Lit is written by a community of scholars working on the specific topic addressed in the review. They are intended for both policymakers and researchers. We aim to describe what we have learned from research and to highlight the important questions for which evidence is lacking. The Lits are living documents that will be updated approximately each year. All published versions will be available on the VoxDev website so that scholars can cite the reviews with confidence that the version cited will be accessible in the future.

Please contact us at engage@voxdev.org if you have any questions or feedback.

Editor's Note: This VoxDevLit draws on the Annual Review of Economics' chapter on Mobile Money by Tavneet Suri (2017), with permission of the Annual Review.

Mobile Money
Vol 2, Issue 2
9 February, 2023

Senior Editor:
Tavneet Suri

Co-Editors:
Jenny Aker
Catia Batista
Michael Callen
Tarek Ghani
William Jack
Leora Klapper
Emma Riley
Simone Schaner
Sandip Sukhtankar

Vol 2, Issue 2
9 February, 2023
Abstract

With increasing access to mobile phones across the world, mobile money services have been growing in popularity, enabling users to deposit, transfer, and withdraw funds from a digital account without owning a bank account. Mobile money dramatically reduces transaction costs, while improving the convenience, security, and time taken for transactions. This VoxDevLit summarises research studying the expansion of mobile money providers and accounts over the past decade, and highlights the importance of mobile money in changing financial behaviour, such as its effect on resilience, urban migration, and food security, especially among vulnerable groups.

Citation: Tavneet Suri, Jenny Aker, Catia Batista, Michael Callen, Tarek Ghani, William Jack, Leora Klapper, Emma Riley, Simone Schaner, and Sandip Sukhtankar, “Mobile Money” VoxDevLit, 2(2), February 2023

Contents

Summary ... 3
1 Introduction .. 4
2 How mobile money works ... 7
 2.1 Regulation of mobile money ... 10
3 The success (or lack thereof) of mobile money ... 12
4 Impacts of mobile money .. 16
 4.1 Impacts of the basic services ... 16
 4.2 Impacts of related and augmented services ... 20
 4.3 Mobile credit and banking services ... 22
 4.4 Macroeconomic impacts of mobile money .. 24
5 Conclusion: Is mobile money the payments infrastructure of the future? 24
References... 26
By enabling users to deposit, transfer, and withdraw money without owning a bank account, mobile money can make accessing financial services easier, safer, and more reliable. These changes have allowed for people traditionally excluded from the formal financial sector, including women and the poor, to access formal financial services.

Over the past decade, mobile money adoption has rapidly spread across Sub-Saharan Africa, as well as other developing countries such as Bangladesh, Paraguay, and the Philippines. In 2021, 33% of adults in Sub-Saharan Africa used a mobile money account, an increase from 12% in 2014 (and 21% in 2017) (Demirguc-Kunt et al. 2022). Today, mobile money accounts are used not only for person-to-person (P2P) payments, but also for savings, to receive wage and government transfer payments, as well as to pay merchants and bills.

In 2021, global mobile money transactions totaled $2 billion daily, and there were 5.6 million active agents worldwide, a threefold increase in the number of active agents from five years prior (GSMA 2022a). With mobile money’s increasing popularity and as it becomes closer to becoming a traditional payment system, it is imperative to take a closer look at policy encouraging both investment and innovation in the area.

The most successful and well-known mobile money product, M-PESA, was launched in 2007 in Kenya. Its launch has been followed by other similar services across the developing world. There has been a lot of research on the role systems like M-PESA can play and the impacts they can have on economies. Evidence shows that households with M-PESA are better able to smooth risks, since their consumption is less sensitive to unexpected income and health shocks. In the longer run, this has had impacts on poverty in Kenya. The consumption smoothing effects of mobile money have also been documented in Mozambique, Bangladesh, Tanzania, and Uganda.

In addition to these basic effects, there has been a range of papers, largely using randomised controlled trials (RCTs), showing the benefits of mobile money in particular contexts (such as aid delivery, salary payments, high conflict areas, etc.). There is also a small but growing literature on the value-added products over mobile money, in particular, digital bank accounts which operate over the rails of mobile money. Given that mobile money and, more broadly, a digital payments system has been so widely adopted in the developing world, and seeing that there are so few value-added services layered over it, there is a lot left to do and learn.

This is the second issue of this VoxDevLit, which will be updated as new information becomes available, and new research and findings are highlighted in green. Our hope is that by facilitating a dialogue between governments, practitioners and researchers, our library of VoxDevLits reviews will generate new research that helps fill knowledge gaps.
1 Introduction

The mobile phone has been amongst the most rapidly adopted innovations in the world, with SIM cards and airtime (prepaid phone minutes) now ubiquitous in many economies. This is particularly true in developing economies: as of 2021, there were 1.15 billion and 806.1 million subscribers in India and Sub-Saharan Africa respectively (International Telecommunication Union (ITU) World Telecommunication/ICT Indicators Database). A large body of literature shows the benefits of mobile phones (see Aker and Mbiti 2010 for a review), with specific studies showing that communication via text can affect credit repayment (e.g. Karlan et al. 2012), savings behaviours (Karlan et al. 2016), adherence to medicinal treatments (for one example among many, see Lester et al. 2010), and voting behaviour (e.g. Marx et al. 2016). The expansion of mobile phone markets and networks has been accompanied by innovations that add substantial value for, and provide beneficial services to, customers – in particular, financial services that were previously inhibited by poor infrastructure and high transaction costs.

This review focuses on one of the most widespread technological innovations in the context of developing economies: mobile money. The most prominent and best-known innovation adding service over the mobile phone has been mobile money—which, in 2021, processed over a trillion dollars, or $2.7 billion a day, a 31% year-on-year increase (GSMA 2022a). Mobile money enables mobile phone owners to deposit, transfer, and withdraw funds without owning a bank account. It is therefore distinct from mobile banking, which allows access to one’s existing bank account via a mobile phone. Mobile money is an app in the true sense of the word because it operates via software that is installed on a SIM card, although it is typically run on regular phones rather than smartphones. Mobile money is especially important in developing economies, and is available in 96% of the countries where less than a third of the population have an account at a formal financial institution (GSMA 2019).

Mobile money has been adopted widely and quickly across the developing world. Figure 1 shows mobile money adoption across the world, while Figure 2 shows the adoption of mobile phones worldwide in 2021 and projections for adoption 2025, and Figure 3 the adoption of mobile money as of 2021.

Figure 1 Mobile money adoption across the world (Source: Global Findex)

Source: Global Findex Database 2021

This review focuses on one of the most widespread technological innovations in the context of developing economies: mobile money. The most prominent and best-known innovation adding service over the mobile phone has been mobile money—which, in 2021, processed over a trillion dollars, or $2.7 billion a day, a 31% year-on-year increase (GSMA 2022a). Mobile money enables mobile phone owners to deposit, transfer, and withdraw funds without owning a bank account. It is therefore distinct from mobile banking, which allows access to one’s existing bank account via a mobile phone. Mobile money is an app in the true sense of the word because it operates via software that is installed on a SIM card, although it is typically run on regular phones rather than smartphones. Mobile money is especially important in developing economies, and is available in 96% of the countries where less than a third of the population have an account at a formal financial institution (GSMA 2019).

Mobile money has been adopted widely and quickly across the developing world. Figure 1 shows mobile money adoption across the world, while Figure 2 shows the adoption of mobile phones worldwide in 2021 and projections for adoption 2025, and Figure 3 the adoption of mobile money as of 2021.

1 About 95% of connections in India are prepaid, as are 97% in Kenya, 98% in Tanzania, and 74% in Brazil (Davidson and Leishman 2016).
Early deployments of mobile money systems started in the mid-2000s, with the Philippines, Kenya, and Tanzania being among the first countries to use the service. Since then, this innovation has spread quickly across the developing world. By the end of 2021, there were a total of 316 mobile money services being offered in 98 countries; there were more than 1.35 billion registered mobile money accounts globally, including 518 million actively used for a transaction in the previous 90 days (GSMA 2022a). Though nearly half of all accounts are registered in Sub-Saharan Africa (605 million), in 2021 there were also over half a billion registered accounts in Asia (GSMA 2022a). The most successful and well-known mobile money product was launched in 2007 in Kenya by one of the main telecommunications companies in the country,
Safaricom. The product is called M-PESA, M referring to mobile and pesa being the word for money in Swahili. M-PESA has reached almost universal coverage in Kenya.

Figure 3 Mobile payment account penetration, 2021

Mobile Money

The aim of this VoxDevLit is not to provide a comprehensive review of all aspects of mobile money, but rather to highlight the economics behind the product: what may have driven its adoption and what are its impacts. Given the success of M-PESA, much of the research discussed in this review focuses on Kenya.

2 Aron (2017) provides an excellent review that is more detailed, including on the macroeconomic impacts of mobile money and its regulation.
although there are some more recent studies of mobile money systems in other countries that are now catching up, as well as studies that focus on specific interventions that promote the use of mobile money in a specific context. Towards the end of the review, we also discuss the more recent innovations that build on mobile money systems to deliver additional financial services and value. Although these innovations exist, they have not given rise to a thriving fintech sector. Therefore, we also discuss constraints to their growth, what this implies for the future of mobile money in developing economies, and where the most exciting opportunities for research may be.

The rest of this review is structured as follows. Section 2 describes how mobile money works in practice, and provides a brief description of the regulatory innovations that have accompanied its expansion. Section 3 discusses the adoption of mobile money, and outlines the business models that have typically contributed to its success (or lack thereof). Section 4, covers the impacts of mobile money, especially on financial resilience, and how the product’s capacity to reduce transaction costs for internal remittances has contributed to these impacts. In Section 5, we describe the few innovations that have followed the initial expansion of mobile money, with a focus on East Africa, where adoption is almost universal. This section also discusses why few services have successfully built on mobile money – a phenomenon that highlights how mobile money systems remain very far from being true payment systems. Finally, we speculate on what may be needed to unleash further financial innovation.

2 How mobile money works

Mobile money is not mobile banking — it is a distinct product. It is most often provided by telecommunications companies, henceforth telcos (examples of exceptions are B-Cash in Bangladesh and Splash in Sierra Leone). Mobile money systems, therefore, lie outside the formal banking system and have often been referred to as shadow banking systems (for a definition of a shadow banking system, see Bernanke 2012). From the point of view of the consumer or user, the mobile money system is a payment account that sits on their mobile phone. It operates through a menu on their SIM card and allows them to engage in a variety of financial transactions.

In the initial stages of mobile money, the focus was largely on allowing consumers to make person-to-person (P2P) payments digitally without needing a bank account or a wire transfer. As mobile money expanded its purview, consumers were able to use it to pay their bills (including utilities), to store and hold money (i.e. save), to make person-to-business (P2B) payments, to receive payments from businesses (such as wages), and to receive government-to-person (G2P) payments.

Mobile money works very simply. On the consumer side, the consumer registers an account at a mobile money agent, providing information that is equivalent to the Know Your Customer (KYC) banking rules. They register for the service with a government-issued ID (in some countries this is the ID used for voting). This process takes a few minutes (as opposed to opening a bank account, which could take days or weeks).

3 Fintech refers to financial technology, encompassing all technologies that are related to the finance sector.
4 These two implementations of mobile money are by private entrepreneurs that negotiated with all of the telcos in each country.
5 There are now payment systems that connect bank accounts (e.g. the UPI system in India), but this is not a mobile money system, though it may have some similarities in how it is used and in some of the impacts it may have since it also reduces transaction costs. However, UPI is a wrapper around the banking system, like Apple Pay or PayTM in India. Mobile money is not simply a wrapper but a new payment system, as it does not rely on bank accounts.
6 In many countries, one needs to show an ID to get a SIM card. In 2017, the most common reported use of an ID in Sub-Saharan Africa was to get a SIM card or mobile phone service. (ID4D data, available at https://globalfindex.worldbank.org)
To be able to make any payments from their account, a consumer must deposit cash into it. They do this at any mobile money agent in the country. They give the agent the cash and immediately get a notification that cash has been deposited in their account. From there, they can use the menu on their mobile phone to transfer that money to anyone else in the country with a cell phone via their phone number. To get their cash back, they have to return to the agent. Each of these transactions (depositing is often an exception) incurs transaction fees; of course, the transaction fee schedule varies across countries. Figure 4 shows the transaction fees for transfers across a selection of different countries. The consumer side is, therefore, quite simple — a mobile money account is superficially very similar to a bank account, allowing deposits, withdrawals (a number of banks in the developing world impose withdrawal fees, especially for low-balance accounts), holding money, and making transfers to other individuals. However, there is no interest paid on deposits, and the deposits and withdrawals are done through an agent for the mobile money service and not a bank branch.

In addition, other standard bank services, such as loans or standing order payments, are generally not available through mobile money. Although the consumer side of mobile money feels similar to a bank account, the back end of the system and how it operates are quite different. The money in a mobile money account is called e-money (or electronic money) and always trades one for one with cash (minus the transaction costs for the particular transaction being conducted). When a consumer deposits money in their mobile money account, they are in fact purchasing the equivalent value in e-money from the agent. This means that the agent must hold a stock of e-money that they can then trade with the consumer. Similarly, if the consumer wants to withdraw money from their mobile money account, they are selling e-money to the agent for cash of the equivalent value (minus the transaction cost).

Figure 4 Transaction fees for Kenya, Uganda, Tanzania, the Philippines, Pakistan, and Bangladesh

7 We chose these countries because they have the most successful deployments of mobile money for which tariff charts were publicly available.
8 In Kenya, withdrawals can also be made from an ATM, although this was added to the suite of services provided by M-PESA some time after the launch of the product.
9 Although mobile money providers are increasingly partnering with banks in order to offer more formal saving and loan services e.g. MoKash, a partnership between MTN Uganda and Commercial Bank of Africa Uganda, provides both interest on saving balances and allows users to build up a credit history and withdraw loans.
The agent’s primary role is, therefore, to manage their float or inventory of e-money as they would their inventory of any other commodity they stock. Most of these agents are either existing businesses that sell airtime and phones, or small retailers such as basic grocery stores, petrol stations, chemists, or tailors. As of December 2019, the number of agent outlets tripled over the preceding five years to 7.7 million (GSMA 2019). Agents always have an existing business and provide mobile money services as an addition to their regular business. The requirements to become an agent vary across countries. In Kenya, for example, potential agents need to apply to the mobile money operator to become an agent (see Jack et al. 2010 for more details on the evolution of the agent system in Kenya).

Figure 5 Agent density in Kenya in (a) 2007, (b) 2011, (c) 2015

Source: Finaccess Geospatial Mapping 2016

Applicants have to have a bank account and an Internet connection to be considered, and, if they are
approved as agents, they have to purchase an initial quantity of e-money valued at $1,000. They can then trade this e-money as they would any other commodity of which they hold inventories. If they run out of e-money, they go back to the operator to purchase more, and if they run out of cash, they can sell e-money back to the operator. Since 2009, banks have been allowed to be agents to the agents, so that agents can trade cash and e-money back and forth with bank branches rather than only with the operator. Agents are a core part of the mobile money model, as they provide consumer cash-in and cash-out services, i.e. they serve as the ATM equivalents. Therefore, the extent of the network of these agents is crucial.

Figure 5 shows the initial distribution of M-PESA (the only mobile money service at the time) agents in Kenya in 2007, when the service was launched, as well as the subsequent agent expansion through 2015.

Aside from consumers and agents, there is a third component underlying the operation of mobile money: what happens to the money itself. The cash deposited in mobile money accounts is usually ultimately held in trust accounts, which are administered by a small number of commercial banks in the country. The trust accounts are owned by the mobile money account holders – think of each mobile money account holder as having rights over a small sliver of one of these trust accounts. However, the account holder cannot deposit or withdraw money from their mobile money account at the commercial bank that holds a trust account (unless the bank branches are themselves agents). The account holder can only deposit and withdraw money from a mobile money agent. Similarly, an individual's mobile money account is not considered to be a bank account – it does not earn interest and loans are not available to users. However, the trust accounts often earn interest, as they are accounts in the commercial banking system. Given this structure, the mobile operator with which the mobile money account is held is itself not subject to the same regulations under which commercial banks or other deposit-taking institutions conduct business.

2.1 Regulation of mobile money

On the regulatory side, mobile money has required some innovation to build the necessary governance and institutions. For example, in the case of Kenya, when M-PESA started growing, a number of the commercial banks lobbied the Central Bank of Kenya to restrict and regulate it more heavily. These efforts were largely unsuccessful, as an audit by the Central Bank revealed few issues and user satisfaction surveys were extremely positive. However, this was soon followed by the Central Bank implementing agent banking regulations in 2010, which allowed banks and other financial institutions to offer some banking services (account opening, deposits, and withdrawals) at nonbank agents, the same agents targeted by M-PESA. Banking institutions, previously limited to expensive brick-and-mortar operations, were therefore allowed to compete more directly with mobile money.

Aron (2017) provides an excellent review of the regulatory side of mobile money systems, including how the regulation for mobile money may need to be unbundled at the level of the component systems and how regulation should be built around each of the components (such as customer registration, exchange and storage of e-money, foreign transfers, and interoperability). The GSM Association (GSMA) Mobile Money Regulatory Index (2021) conducts a quantitative assessment of the extent to which regulations have been effective in enabling mobile money adoption (GSMA 2021), see Figure 5. The index scores each economy across six different dimensions, using 26 different weighted indicators, and an overall index is computed for each economy by using these dimensions. The dimensions include: authorisation; consumer protection; transaction limits; KYC requirements; agent networks; and investment and infrastructure environment. Scores range from 0-100, with a higher score associated with more enabling regulation. In

10 More specifically, agents must be registered as a limited company and have traded for at least 6 months. The investment required is approximately $1,000 per outlet for float and $1,000 worth of SIM card replacements.

11 As I discuss in Section 5, more recently, telcos have created partnerships with banks such that loans are available but come from the partner bank and not from the telco.

12 In some countries, such as India, mobile money accounts must be delivered in partnership with a bank and are thus subject to the same regulatory requirements as traditional bank accounts.
In this section, we touch on only the main innovations in the regulatory system that have emerged from the advent of mobile money. Most countries have created their own regulatory frameworks around mobile money, but there are many common elements. The first is the requirement to report on aggregate transactions (and sometimes high-value individual transactions) to the regulator in charge—this is often the Central Bank but may also include the Communications Commission. Often, there are limits on transaction sizes, and the amount that can be held in a mobile money account; for example, in Kenya, these limits are $700 and $1,000 respectively, and in Uganda, $1,500 and $1,200, respectively. Similarly, there is often direct regulation around the trust or bank accounts that hold the float, and rules on whether these can earn interest (as in Kenya, Malawi, Afghanistan, Sri Lanka, and several Pacific Island countries; see Greenacre & Buckley 2014) or must be 100% cash reserve accounts deposited at the Central Bank (as in the Philippines). When these accounts earn interest, rules regulate whether interest is to be disbursed to consumers and, if not, what happens to it. In Kenya, for example, the interest from the trust account has to go to charity; in Tanzania and Liberia, it can be disbursed back to consumers; and in India, the providers would pay out the interest earned on the value stored in the mobile account through payment banks (see below). Although there are variations in the exact regulatory framework across countries, these regulations are far less stringent than those for commercial banks.

A final regulatory issue that has been debated heavily in the policy sphere (see Camner 2013, Davidson and Leishman 2016) is the issue of interoperability, the ability to transact with mobile money across service providers. Interoperability can be at the platform level or the agent level (allowing customers or agents of different services to send mobile money to each other, respectively), or at the customer level (allowing customers to access their mobile money account through any SIM) (Davidson and Leishman 2016). As mobile money systems come closer and closer to becoming payment systems, the issue of whether transactions can cross different telcos has become relevant. In some countries, like Bangladesh and Sierra Leone, this is not an issue because, in both countries, at least one mobile money operator is an entrepreneur independent of a telco but with agreements with a number of different telcos. However, in most countries where a given product is launched by a single telco, policy makers are debating their role in requiring interoperability, given how important network externalities are in this industry. To date, Tanzania is the only country where this is operational. It was enabled by the industry leading the discussions and adopting common business standards to ease switching, working closely with the Bank of Tanzania, which
oversaw the regulatory process. Afghanistan has a “switch” that would allow interoperability, however, no telcos have signed up to use it as the subscription fees are too high.

A different approach to regulation that is worth mentioning is that of India. Starting in 2014, the Reserve Bank of India issued licences to several entities to function as payments banks, which remain separate from commercial banks with separate regulated functions. Unlike a regular small bank, this new financial institution is not permitted to extend credit. However, it can perform all the other functions of a banking institution, such as taking deposits, paying interest, enabling transfer and remittances, issuing debit and ATM cards, and offering Forex services. The aim of setting up these payments banks was to boost financial inclusion across the country and enhance the use of mobile services in banking. Some of the first payments bank licences in India were awarded to Aditya Birla Nuvo, Reliance Industries, Sun Pharmaceuticals, National Securities Depository, Vijay Shekhar Sharma (Paytm), Fino PayTech, Airtel M Commerce Services, Vodafone M-PESA, the Department of Posts, Cholamandalam Distribution Services, Dilip Sanghvi, and Tech Mahindra (the last three have since surrendered their licences). In late 2016, the Indian economy was demonetized and the two largest notes withdrawn from circulation. Although much chaos ensued (for early opinions on demonetization, see Banerjee 2016, Basu 2016), payments banks and digital payment services like Paytm have made immense gains in the months post-demonetization, as individuals switch from cash to digital payments where it is easy to do so (Chakravorti 2017). Demonetisation may prove to be the biggest push yet for digital payments in India.

3 The success (or lack thereof) of mobile money

As of 2021, 10% of adults in developing economies owned a mobile money account, a six percentage point increase on 2014 – mobile money penetration has been most prominent in the Sub-Saharan Africa region, where 33% of adults now have a mobile money account (Demirguc-Kunt et al. 2022). One of the most successful deployments of mobile money has been M-PESA in Kenya. M-PESA has been widely adopted, with 97% of households having an account as of 2014 (see Jack & Suri 2016). Although other countries are now catching up: for example, in Uganda, 51% of individuals older than 15 years have an account, and in Tanzania, 39% do (Demirguc-Kunt et al. 2018), there are still many unsuccessful deployments of mobile money. Although it is hard to causally identify the reasons for the success (or lack thereof) of mobile money deployments, it is worth discussing some of the hypotheses for why mobile money has been a success in some economies but not others. It is important to understand how the business models and implementations of the various services may differ across countries and what has correlated with success.

As a summary example, Vaughan et al. (2013), some of the actual implementers of M-PESA in Kenya, describe their pilot, which started in October 2005 with a grant from the UK Department for International Development’s innovation fund and with microfinance clients. The product was then changed and rebranded based on consumer feedback as an internal remittance product to send money to friends and family – this experimentation was important to the success of the product. Vaughan et al. (2013) also highlight some additional key factors that allowed mobile money to reach scale in Kenya, in particular, developing a strong network of agents, removing entry barriers for customers, investing in the infrastructure for scale at the very outset, and regulating the system after the innovation. Of course, the fact that Safaricom had a large market share also likely played a role.

The success of mobile money systems is certainly underpinned by the rapid deployment and growth of the agent network, i.e. the end distributors of the service. This growth and reliability are associated with a network that is trustworthy, efficient, liquid, and profitable for the agents. As an example, Figure 5 shows the rollout of mobile money agents in Kenya during the success of MPESA, displaying the growth in access to agents in 2007 (just as M-PESA launched), 2011 and 2015. Note that there were fewer than 1,000 bank branches, just over 1,000 ATMs, and 3,000 M-PESA agents across Kenya in early 2008 (Camner...
et al. 2009). At the time of writing, there are 141,542 agents serving both M-PESA and other mobile money customers.14 Table 1 shows data on the number of agents in some of the countries with mobile money deployments.15 It is striking that the number of agents is at least triple the number of bank branches in Kenya, Uganda, Tanzania, and Bangladesh.16 Adoption rates in Sub-Saharan Africa range from 67\% in Kenya to 9\% in Nigeria (Demirguc-Kunt et al. 2022), where mobile money is both poorly deployed and poorly adopted.

Table 1 Number of agents in selected markets

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of agents by providera</th>
<th>Number of Agentsb</th>
<th>Number of bank branchesb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pakistan</td>
<td>EasyPaisa 10,500 NA NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Philippines</td>
<td>GCash 18,000 NA NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Kenya</td>
<td>M-PESA 20,500 65,569 10,619</td>
<td>41,794 477</td>
<td>45,429 579</td>
</tr>
<tr>
<td>Uganda</td>
<td>NA NA</td>
<td>3,567 4,989</td>
<td>31,755 8,641</td>
</tr>
<tr>
<td>Tanzania</td>
<td>NA NA</td>
<td>31,755 8,641</td>
<td>31,755 8,641</td>
</tr>
<tr>
<td>Nigeria</td>
<td>NA NA</td>
<td>31,755 8,641</td>
<td>31,755 8,641</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>NA NA</td>
<td>31,755 8,641</td>
<td>31,755 8,641</td>
</tr>
</tbody>
</table>

a Data taken from Groupe Speciale Mobile Association data from the Agent Management toolkit, 2012

b Data taken from the Financial Services for the Poor maps data for Kenya from 2015, Nigeria from 2015, Tanzania from 2014, Bangladesh from 2013, and Uganda (date unknown). Data available at http://fspmaps.org

Abbreviation: NA, not applicable

As these agent networks grew and became denser, the distance between households and agents shrank. For example, Table 2 shows how the average distance to a mobile money agent changed in Kenya between 2007 and 2015, and how it compares to the average distance to a bank branch. These averages mask a lot of heterogeneity: in 2007, 32\% of households lived more than 10 km away from a bank branch, and 19\% lived more than 20 km away, whereas 46\% of households lived within 1 km of an agent, a number that rose to 68\% by 2015. In addition to a dense network of agents, successful deployments of mobile money had a network of agents that were efficient at managing their e-money and cash inventories, helped by consistent monitoring and liquidity management by the service operator. Eijkman et al. (2010) show that agents rebalanced their accounts almost daily, more frequently in urban areas. In addition, agents faced a lot of competition, as consumers favoured agents with better service and trading volumes.

Table 2 Average distance to the closest financial institution, Kenya

<table>
<thead>
<tr>
<th>Year</th>
<th>Bank branches</th>
<th>Bank agents</th>
<th>Mobile money agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>9.2 km</td>
<td>NA</td>
<td>4.9 km</td>
</tr>
<tr>
<td>2011</td>
<td>7.0 km</td>
<td>5.2 km</td>
<td>1.9 km</td>
</tr>
<tr>
<td>2015</td>
<td>6.0 km</td>
<td>1.9 km</td>
<td>1.4 km</td>
</tr>
</tbody>
</table>

14 Communications Commission of Kenya, Quarterly Sector Statistics Report for Quarter 2, 2015–2016 (October to December, 2015).

15 The year of the data varies across countries because of the difficulty in finding recent data on the number of agents in each country.

16 These numbers come from the FSP Maps data, which was collected in Kenya in 2015, in Nigeria in 2015, in Tanzania in 2014, in Bangladesh in 2013, and in Uganda (date unknown). The FSP maps data is available at http://fspmaps.org.
Similarly, in a later study, Balasubramanian & Drake (2015) look at how the demand for mobile money in Kenya and Uganda is affected by agent quality (measured in terms of pricing transparency and expertise) and agent competition. They combine a survey of 3,000 mobile money agents with location data on 68,000 financial access and transportation points, spatial census data, and population and poverty estimates. They find that greater agent competition is associated with a higher inventory of both cash and e-money, that more transparency in pricing and greater agent expertise are associated with higher demand, and that the return to expertise increases with competition.

Aside from the agent network, there are a number of other factors that may have driven the successful adoption of M-PESA, and have been described qualitatively. Mas & Morawczynski (2009) attribute some of the success of M-PESA to strong branding, an easy-to-use product, simple and transparent retail pricing, free deposit and no minimum balance feature, ability to send money to nonusers, and ability to perform ATM withdrawals. Heyer & Mas (2009) highlight the importance of volume, momentum, and coverage, as well as the regulatory environment, the quality of the retail infrastructure, and the high telecom penetration. Mas & Ng’weno (2010) highlight brand management, channel management, and pricing as the major contributing factors behind M-PESA’s massive success. Similarly, Mas & Radcliffe (2010) discuss the clever and easy-to-use design, and Safaricom’s business model. The authors suggest that the differentially wide spread of mobile money across countries could be partially attributed to differential regulations. M-PESA, in particular, benefited from a good working relationship between Safaricom and the Central Bank. Mas & Radcliffe (2011) also highlight how important network effects and trust are in scaling up a retail payment system. More recently, Lal & Sachdev (2015) compare five successful mobile money deployments\(^17\) to five less successful ones.\(^18\) In addition to the relationship with regulators and the agent networks mentioned above, they suggest that adoption is also driven by an underlying reliable mobile network with a successful and trusted brand and business.

One of the earliest quantitative studies of mobile money started in 2008 in Kenya around M-PESA. Jack & Suri (2011), in this and later work, document the patterns of adoption of M-PESA over 2008–2014\(^19\) using household surveys conducted across a large part of the country. They tracked the fast adoption of M-PESA in Kenya and traced the rollout of the agents in Kenya until 2010, recording the characteristics of the adopters and collecting data on access to the service. As expected, the initial users were richer and more educated; however, adoption of the product did reach down the income spectrum in the country, with over 90% of households in their sample having an account by the time of their last survey in 2014.\(^20\) Khan & Blumenstock (2016) study the adoption of mobile money more carefully in Ghana, Zambia, and Pakistan. They build a supervised machine-learning model of adoption using call record data and find this model does not distinguish very effectively between active and registered mobile money users, contrary to expectations that active users should be quite distinct in their patterns of phone use. Across countries, it is unlikely that any single set of characteristics will consistently predict mobile money adoption and use.

Beyond the household level, Ortigao et al. (2015) survey firms in Maputo and Matola in Mozambique and show that financial illiteracy on the part of both the seller and the buyer restricts the use of financial services such as point of sale (POS) devices. Similarly, lack of trust and knowledge, coupled with technological issues, is a hindrance to business owners using mobile payments. Finally, they show that the adoption of

\(^17\) These are Telesom ZAAD in Somaliland, Dialog eZ Cash in Sri Lanka, Econet EcoCash in Zimbabwe, SMART Communications SMART Money in the Philippines, and Globe Telecom GCASH in the Philippines.

\(^18\) These are Vodacom M-PESA in South Africa, MTN money in Uganda, Eko Financial Services in India, and the broader situations in Nigeria and Brazil, although MTN money in Uganda is now growing rapidly.

\(^19\) The surveys were conducted in 2008, 2009, 2010, 2011, and 2014. The sample was not national—it excluded sections of the North of the country, where households are semi nomadic and therefore hard to track over time. The part of the country excluded from the sample covered about 8% of the Kenyan population at the time. The sample was also weighted toward urban areas, as the initial sample drawn in 2008 was weighted by the number of agents in the administrative location (there were about 2,500 locations in Kenya at the time). The reader is referred to Jack & Suri (2011, 2014) for more information on the sample.

\(^20\) Mbiti & Weil (2011) also document the characteristics of the users.
POS devices is positively correlated with the size of business and the volume of transactions, whereas the use of mobile phone technologies for payments is related to the owner's age and whether they are a frequent cell phone user.

Cruces et al. (2020) design an RCT in the Gambia to understand the barriers to the use of mobile money. They focus on a sample of individuals who had mobile money but had never used it, and find that offering discounts on withdrawals, and making these salient, created more awareness of mobile money, but did not increase the use of mobile money. They also find that the treated individuals were more likely to perceive the service as expensive. Clearly, there are still cost barriers to making mobile money useful in such environments. Karra et al (2022) also study the adoption of mobile money in underserved populations. Working with M-PESA in Mozambique, they study the impact of the gender of the telephonic sales representatives on take up. They find that female representatives had lower adoption rates of SIM cards, relative to male representatives, but they outperformed their male counterparts in terms of M-PESA enrollments.

Overcharging by mobile money agents is also a potential barrier to mobile money adoption, particularly for women. In Ghana, Annan (2022a) shows that over-charging by mobile money agents is common, taking place in 27% of transactions, with a mean overcharge rate of 54-82% of the official charge. Female vendors are more likely to overcharge and female customers are more likely to experience overcharging. Building on this, Annan (2022b) uses an RCT of a programme providing information on prices and the ability to report overcharging to show that information significantly reduces the incidence and severity of overcharging. Treated consumers trust mobile money agents more and are more likely to trust agents who are not engaging in overcharging. Treated consumers also increase their use of mobile money services, both for transactions and for saving. In a similar vein, Kubilay et al. (2023) study scams on mobile phones (inclusive of, but not limited to, mobile money related scams) in Kenya, and highlight the challenges of improving consumers ability to identify these scams.

Although mobile money was a technological innovation, it was enabled by some creative regulation and, more importantly, a network to efficiently distribute and manage cash across vast distances. As we describe in Section 4, one of the most important uses of mobile money has been P2P remittances. Therefore, having a widespread agent network whose cash and e-money inventories are well managed is crucial to the success of the product. Of course, once adoption starts, there will be strong network effects, even stronger than for mobile phones themselves given that there is little interoperability in these markets. There has been surprisingly little work documenting network effects in the adoption of mobile money. An exception is Batista and Vicente (2020) who conducted a randomised experiment with 200 primary farmer subjects in the Manica province of Mozambique, and 400 of their farming network members. All primary subjects were newly given access to mobile money accounts. In the treatment group, the two closest farming friends of the primary subjects were provided with a mobile money account. The results suggest that the network intervention increased the general use of mobile money by primary subjects and their network members, and reduced household expenditures and lending to social networks. These patterns are consistent with lower social pressure to share resources induced by the network treatment, although the mechanisms underlying this effect cannot be precisely distinguished in the context of this experiment. Further work examining this and related issues is required.21

21 An early exception is Fafchamps et al. (2016), who study a precursor to mobile money, the P2P transfer of prepaid airtime credit in Rwanda. More recently, Batista, Fafchamps and Vicente (2022) describe sharing behavior of information about P2P mobile money transfers within exogenously created networks of mobile money users in rural Mozambique. The results from their lab-in-the-field experiment show that simpler interventions within these networks are likely to produce strongest information sharing: anonymous communication, for example, yields higher sharing than homophily within networks.
4 Impacts of mobile money

4.1 Impacts of the basic services

Since the launch and success of M-PESA, and the launch of mobile money services across many countries in the developing world, there has been a lot of research around what role systems like M-PESA can play and what impacts they can have on economies. So, what are the possible mechanisms through which mobile money systems can affect developing economies?22

All mobile money systems have transaction fees and so do not really encourage cashless retail transactions in the way credit cards or debit cards have in the United States. Instead, in most countries they are largely used to make two types of transactions: (a) geographically disparate transactions, i.e. transactions across space, and (b) transactions where the opportunity cost of holding cash may be high, as in high-crime cities (see Economides & Jeziorski 2015). For these types of transactions, mobile money provides a dramatic reduction in transaction costs, as well as improvements in convenience, security, and time taken for the transaction. For example, in Kenya, the average transaction travelled 200 km in 2008 (Jack & Suri 2011), which would be an approximately $5 bus ride – instead, consumers paid a $0.35 fee (given the average transaction size). In addition, the mobile money agents are much more easily accessible (see Table 2) than any other financial institution, so the money sent via this system can be easily deposited and withdrawn.

Given these reductions in transaction costs and improvements in safety, mobile money could simply facilitate trade both on the intensive margin (making existing transactions more efficient), and on the extensive margin (enabling transactions that would not have happened without mobile money). Such facilitation of trade could result in a better allocation of capital and, thus, increase savings. Similarly, there could be an improvement in the allocation of human capital as the returns to migration improve. In addition, mobile money accounts may provide safe storage of savings and potentially reduce precautionary savings (though improving the efficiency of person to person transfers), thus potentially increasing total savings as well as improving the allocation of savings and risk (via increased and more efficient remittances) across households and firms. In Kenya, researchers found that mobile money boosted entrepreneurship by reducing theft (and therefore output losses), while speeding up entrepreneur-supplier transactions and raising the valuation of trade credit (Beck et al. 2018). Mobile money may also have effects on intra-family dynamics, as these accounts are individually held. Finally, on the macroeconomic side, mobile money systems could increase the velocity of money and inflation (though the evidence is mixed on this, as discussed below). In economies with dual currencies, like that of Somaliland (see Iazzolino 2015), mobile money could facilitate trade, remittances, and transactions in US dollars.

Economides & Jeziorski (2015) study the demand for mobile money, exploiting a natural experiment created by an exogenous and unanticipated increase in the transaction fees in Tanzania. They identify the slope of the demand curve and compute consumers’ willingness to pay for risk amelioration using transportation and storage transactions. They find that consumers who execute large transactions are usually more price inelastic than consumers who execute smaller transactions and that demand for long-distance transfers is less elastic than that for short-distance transfers. Consumers use the mobile money network extensively for extremely short-term storage (less than 2 hours), probably due to high levels of street crime and burglaries, and are willing to pay up to 1% of the transaction amount to avoid carrying money in the form of cash for each extra kilometre and up to 1.1% to avoid keeping money at home for an extra day.

Looking at the impacts of mobile money in Kenya, Jack & Suri (2014) use the survey data described above to understand how M-PESA has improved the ability of households to share risk. Informal risk-sharing

22 Maurer (2012a,b) and Donovan (2012) provide descriptions of similar mechanisms through which mobile money could affect economies.
networks are used extensively to pool risk in developing economies, including in Kenya (see Suri 2014). Given the prevalence of such relationships, which involve transfers of money between households, and given the large transaction cost reductions afforded by M-PESA, M-PESA could have important impacts on the efficiency with which individuals spread risk. As Jack & Suri (2014) show, these effects are sizeable – Figure 7a illustrates their findings. Households with M-PESA are better able to smooth risks, and their consumption is less sensitive to shocks. When subject to a shock, households that have mobile money are more likely to receive a remittance from friends and family, receive more money in total, and receive it from a more diverse set of people in their network, all resulting in efficiency gains in risk sharing. This also explains why a large share of transactions on M-PESA are P2P remittances across long distances. Apeti (2023) finds similar consumption smoothing results, i.e. a reduction in consumption volatility, for a large sample of developing countries, mostly due to improved financial inclusion and increased remittances.

Figure 7 Resilience of M-PESA users and nonusers to economic shocks. Panel a is based on data from Jack and Suri (2014); panel b is based on data from Suri et al. (2012).

In complementary work, Suri et al. (2012) look specifically at how M-PESA affects people's response to health shocks. They find that M-PESA users are able to spend more on medical expenses in the event of a health shock while also increasing expenses on food and maintaining their education expenditure. Nonuser households or households far from agents are unable to increase expenditure on food after the shock, decrease their non-food subsistence expenditure, and might pull children out of school to finance health care costs. When hit by an illness shock, nonusers substitute away from non-medical expenses, such as

23 Kinnan (2014) provides an excellent review of the literature on informal risk sharing.
24 The cost of sending money via M-PESA was almost 30% of that of sending it via postal bank or via bus delivery through a driver and 46% of the cost of sending it via Western Union (these percentages do not include transportation or time costs).
nonfood subsistence, to finance the needed medical care expenditure. The authors find no evidence that nonusers suffer significant food reductions, suggesting that both users and nonusers do not cut back on necessary consumption. Non-users seem mostly to substitute away from their children's education to fund their health shocks. These results are illustrated in Figure 7b. Ahmed and Cowan (2021) see similar results with respect to health shocks in Western Kenya, finding that mobile money helps households spend more on health care, through increased access and utilisation of informal loans.

Finally, using the last round of their panel survey conducted in 2014, Suri and Jack (2016) measure the longer-term impacts of M-PESA. They find that better access to mobile money services has increased household consumption and savings and, thus, reduced poverty rates by 2 percentage points. This is equivalent to 196,000 households moving out of extreme poverty, and the reductions were larger among female-headed households. They also find significant changes in occupation choice, largely among women, who moved away from agriculture as their main occupation to business and retail. As a result of M-PESA, 186,000 women made this transition.

In a randomised control trial newly introducing mobile money in rural areas of Mozambique, Batista and Vicente (2022) confirm the findings by Jack and Suri (2014) when following households in both treated and control locations over three years: after major floods affected some of the experimental areas in 2013, households in treated locations were better able to smooth their consumption and reported being less vulnerable to episodes of hunger. This same response occurred in response to household idiosyncratic shocks. This consumption smoothing behaviour happened as a result of increased migrant remittances to households affected by shocks, as shown by both mobile money administrative records and remittance reports from household surveys. Households affected by shocks and who lived in areas where mobile money was available were in this way provided with extra resources to attend shock-related expenditures without the need to cut on food expenditure.

Mobile money also changed the spatial allocation of rural households who, after the introduction of mobile money, were more likely to send out-migrants and to receive remittances. Batista and Vicente (2022) posit that these movements are a product of improved risk-sharing through mobile money and argue that mobile money is a likely driver of urbanisation and structural change. This can presumably explain the observed increase in the perceived well-being and decreased vulnerability of treated households.

Using a randomised experiment in Northern Uganda, Wieser et al. (2019) finds evidence that mobile money adoption is associated with positive economic effects. Introducing mobile money resulted in cost savings for those sending and receiving remittances, doubled the non-farm self-employment rate from 3.4 to 6.4% and reduced the number of households with very low food security from 62.9 to 47.2%. Mobile money access also changes health-seeking behaviour amongst women in Uganda. Egami and Matsumoto (2020) find that mobile phone adoption positively affected antenatal care take-up, and eased liquidity constraints facing rural households who typically travel long distances to access healthcare.

Batista and Vicente (2022) find that households in villages where mobile money was available were less likely to keep actively farming their land, similarly to Suri and Jack (2016). This agricultural disinvestment effect is strengthened over time, as treated household members emigrate out of rural areas - a treatment effect that also strengthens over time. This migration treatment effect of mobile money is consistent with the hypothesis that the introduction of mobile money reduced the transaction costs associated with long-distance transfers and in this way improved household-level insurance possibilities, which incentivised migration. While the explanation for agricultural disinvestment in Suri and Jack (2016) was occupational change, the result in Batista and Vicente (2022) points to the introduction of mobile money creating a different type of occupational change that involves geographic mobility.

In Kenya, Gürbüz (2017), using self-collected survey data and an instrumental variable strategy, finds that mobile money use leads to households being 16-22% more likely to save and increases average household savings by 15-21% of average household income ($2.74-3.72).
In Tanzania, Riley (2018) uses a panel difference-in-difference specification to examine village spillovers from the use of mobile money services. She finds that mobile money improves risk sharing for households that use mobile money but does not have spillovers to non-user households within the same village. Mobile money use makes it more likely a household receives remittances and increases the value of remittances received after a village-level rainfall shock, such as a drought or flood. Also in Tanzania using the same data source, Abiona and Foureax Koppensteiner (2018) find that use of mobile money services protects households from sliding into poverty after a rainfall shock, and enables households to maintain investment in human capital. Pople et al. (2021) examines the effect of mobile money cash transfers by the World Food Program (WFP) to households in a flood-prone area of Bangladesh, finding that households receiving payments were 36% less likely to go a day without eating.

For Uganda, Munyegera & Matsumoto (2014) use panel survey data to show that using mobile money is associated with a 69% increase in household per capita consumption, mobile money subscribers are 20 percentage points more likely to receive remittances from their family members in town, and the total annual value of remittances received is 33% higher compared to non-user households.

Using survey and administrative data on M-PESA in Kenya, Jack et al. (2013) study the impact of mobile money on the volume, reach, direction, and type of internal remittances. They find that M-PESA users are more likely to receive and send remittances (by 37.4 and 34.3 percentage points, respectively). This includes an increase in the frequency (two more transactions per round) and amount of remittances. The reach of transactions is, on average, 100 km greater for M-PESA users, and reciprocity is also greater for M-PESA users (they are 13.2 percentage points more likely to engage in at least one reciprocal transfer). Finally, M-PESA users are more likely to transact for regular support, credit, and insurance purposes, and they change the composition of remittances by shifting from regular support purposes to credit arrangements.

Using qualitative methods, Morawczynski (2009) finds that M-PESA usage increased during periods of violence, like the post-election violence in 2007 in Kenya, and resulted in a reduced vulnerability to consumption shocks. Morawczynski & Pickens (2009) find that M-PESA increases savings for both the banked and unbanked, improves women's empowerment, and facilitates transfers within networks during bad events. Plyler et al. (2010) find community-level effects of M-PESA in terms of money circulation and local employment; physical, financial, and food security; greater financial, human, and social capital accumulation; and an improvement in the business environment, as transactions are easier.

Aside from these initial studies on mobile money, there are a number of recent field experiments studying the impact of mobile money. Batista & Vicente (2013) study the initial rollout of a mobile money product, mKesh, in Mozambique. In the treatment areas, there was intense mobilisation of agents and information dissemination (agents were recruited and trained, and community theatre and community meetings were organised to disseminate mKesh). In addition, randomly chosen households in treatment areas were provided with individual information and support in self-registering for a mobile money account. Using both survey, behavioural and administrative data, the authors find that, in terms of take-up, 76% of individually targeted individuals conducted at least one transaction on the system. In terms of impact, financial literacy, the trust in local agents, and the usage of mCel (the accompanying telco), financial services were higher in treatment areas. In addition, the overall willingness to remit (independently of the money transfer mechanism) increased, though the overall willingness to save did not increase significantly. As with the studies on M-PESA, the remittance aspect of mobile money seems to be the most salient.

In Bangladesh, Lee et al. (2017) use an information treatment to encourage use of mobile banking accounts by rural households with a migrant member to facilitate urban to rural remittance flows. The information and training in mobile money increased use by 200% compared to the control group. Migrants from treated households that used the account sent home 30% more remittances by value, leading to substantial welfare improvements for the rural household in terms of increased expenditure, increased saving, reduced borrowing and improved health. Rural households that experienced a rainfall shock were better able to insure against it.
Aggarwal et al. (2020) study mobile money use amongst microentrepreneurs in urban Malawi, using an RCT with three different treatments that vary the cost of using mobile money. They find that most treated individuals opened accounts and also used them. In terms of economic outcomes, they find that the treatment entrepreneurs shift some of their labour from their business to agriculture, with no other clear impacts. However, it does seem that the entrepreneurs are not using their mobile money accounts for transfers, but instead to save.

Kipchumba and Sulaiman (2021) study the effects of mobile money on women's empowerment. In particular, they use national data from Kenya to show that mobile money increases the control over their personal finances for both men and women, but the effects are larger for women. However, they do not find that this then also affects how other household decisions are made.

4.2 Impacts of related and augmented services

Blumenstock et al. (2016) study the response to shocks (in the context of an earthquake in Rwanda) using administrative data on mobile phone records, airtime purchases, and transfers of airtime. They find, as a result of the earthquake, a modest increase of $84 in airtime transferred and an increase of $16,959 in value of calls made, potentially indicative of indirect transfers as the caller bears the cost of the call in Rwanda. They also find that transfers were more likely to be sent to wealthier individuals and to individuals with a history of reciprocity with the sender.

Recent work has also exploited the potential of mobile money to promote the development of microenterprises. Batista et al. (2022) worked with 1270 microentrepreneurs operating in a relatively homogenous setting in Maputo, the capital city of Mozambique. They evaluate the impact of a 2x2 randomised experiment implemented in 2014, where microentrepreneurs were provided, depending on their treatment status, with mobile money accounts paying interest on savings for a limited amount of time and/or financial management training. This study finds that removing financial and management constraints had a positive impact on female-owned business performance but had no detectable effect on male-owned businesses – with a treatment effect equivalent to approximately 120 USD/month (35% of the average monthly profits in the control group). In terms of mechanisms, the evidence shows that financial management training increased understanding of financial management skills in the short and long-run, whereas there was limited impact on savings but increased confidence in the ability to save more in the future. Administrative mobile money records show that microentrepreneurs in the experimental groups provided with interest-bearing mobile money accounts were more likely to conduct all types of mobile money transactions, with some evidence of increased effects of the combined intervention.

Two other papers-in-progress examine the effect of providing mobile money accounts to female entrepreneurs. Riley (2022), in Uganda, examines the impact of disbursing microfinance loans through a mobile money account instead of the usual method of cash. She finds disbursement of loans through the mobile money account leads to an 11% increase in the value of business capital and a 15% increase in business profits, with the proposed mechanism an improved ability to resist sharing pressure from the woman's spouse. She sees that the mobile money account is used for the safe storage of the loan, rather than for transactions, and so the initial deposit of the loan onto the mobile money account is crucial for it to have a positive impact on the business. The household as a whole is also better off when the woman receives the microfinance loan on a mobile money account, suggesting wider benefits from improving women's control of resources. Bastian et al. (2018) in Tanzania, examine the effect of providing mobile saving accounts through a mobile money account (M-Pawa) to female entrepreneurs with and without a business training. They find that after 6 months, treated women are saving more in the mobile saving account, saving less in other forms of saving and obtaining more micro-loans through the mobile saving account. The savings accounts increase women's reported control over how their business money is spent.
Another RCT also explored the potential of mobile money as a secure saving device. In Kenya, Dizon et al. (2017), randomly assigned a mobile money account labelled for saving to women. They found that the initiative increased savings while reducing risk sharing. However, the reduced risk sharing was more than compensated for by the increased savings improving women's ability to manage risk, resulting in an overall improvement in women's ability to manage shocks.

To evaluate the impact of promoting mobile savings on agricultural modernisation, Batista and Vicente (2020) implemented a randomised control trial with farmers in the Manica province of Mozambique. The randomised intervention incentivized savings in the period that mediated between harvest and planting seasons. All farmers participating in the experiment had no prior access to mobile money and were offered identical mobile money accounts, except that the treated farmers were paid interest on balances held in their mobile money accounts over a three-month period between harvest and planting. As a result, treated farmers exhibited significantly higher savings, were more likely to use fertiliser in their land, by 31-36 percentage points, as well as to use other agricultural inputs.

There has also been a growing body of literature that tries to understand the applications of mobile money, i.e. other aspects and circumstances where mobile money could play a role. For example, Aker et al. (2014) conduct the first randomised controlled trial (RCT) involving mobile money in the specific context of cash transfers. To reduce malnutrition during the drought and the 2009–2010 food crisis, households in Niger were given monthly unconditional cash transfers, with women as the primary beneficiaries. The authors compared: (a) a cash arm, where households received the transfer manually; (b) a Zap arm, where transfers were received via mobile money and households were also given a service-enabled mobile phone; and (c) a mobile arm, where the transfers were received manually but households were also given a mobile phone. There was no pure control group. Recipients of mobile money transfers had better nutrition, with a 10–16% more diversified diet, including greater proportions of protein and energy-rich food, and their children ate 33% more of a meal per day. The authors argue that these effects came from reduced time costs for the recipients, with mobile money transfer recipients saving, on average, 2 days over a 5-month period. Despite the small magnitude of this effect, it could have had a significant opportunity cost because it occurred during the planting season. Another potential mechanism increasing bargaining power for women is the increase in privacy, given that the transfer was less observable to other household members. The electronic nature of the cash transfer did not, however, lead to significant use of mobile money beyond the programme. Finally, the authors also show that, although total costs were higher in mobile money villages (due to the distribution of phones), per-transaction costs were 20% lower. With appropriate infrastructure, mobile money could, therefore, significantly reduce costs of cash transfers to disbursing agencies.

Blumenstock et al. (2015b) design an experiment to study mobile salary payments in seven provinces across Afghanistan between August 2012 and March 2013. The intervention provided employees in a firm with a mobile phone and training on using M-Paisa, a mobile money service, and randomly assigned half of them to receive their salary through M-Paisa as opposed to cash. The authors use survey and administrative data and find significant cost reductions for the operating agency but no significant impacts of mobile money use on the recipients.

Blumenstock et al. (2018) conduct a field experiment with automatic payroll deductions toward savings through M-Paisa via a new salary platform called M-Pasandaz. Employees were randomised into the following groups: (a) different default contribution rates from salary to a savings account (0% or 5%, which they could choose to change) and (b) different matching contribution rate from the firm (0%, 25%, or 50%). These were cross-randomizations, creating a 2×3 design with a total of six treatment groups. The authors find that employees enrolled in the 5% deduction rate were 40 percentage points more likely to save and that a 50% matching rate had comparable results to the 5% deduction for saving. The main explanation for this striking result seems to be present-bias preferences, where the employee procrastinates when making a non-default contribution.

25 Zap is a mobile money service operated by the mobile telecommunications company Zain
Breza et al. (2020) conduct a field experiment in Bangladesh to measure the impact of moving garment factory workers from cash to digital wage payments. The workers, most of them women, were randomised into the following groups: (a) workers who received a bank or mobile money account as well as direct wage payments; (b) workers who got an account but were not enrolled in digital payroll; (c) workers who continued to receive wage payments in cash. They find evidence that financial capability comes from experience and ‘learning-by-doing’. Workers enrolled in digital wage payments conduct fewer transactions with the help of bank agents, and carry out more transactions on their own. Compared to workers in the mobile-money account-only group, these workers are 24 percentage points more likely to make a send-money transaction and 60 percentage points more likely to make a withdrawal from their account without receiving assistance. They added an audit study where actors posing as factory workers were sent to conduct mobile money transactions with local agents and find that agents operating around factories that pay electronic wages are less likely to take advantage of women customers, such as adding on extra fees.

Blumenstock et al. (Forthcoming) study the relationship between violence and financial decisions in Afghanistan. Using data from an RCT administered to increase mobile money take-up and combining this with administrative data, a nationally representative household survey, and behavioural field experiments, the authors find that people increase their cash holdings when exposed to violence, and that people experiencing violence are less likely to transact in mobile money, and hold less funds in their mobile money accounts. They argue that the mechanism underlying these effects is a demand for liquidity that arises from the fear of future violence. In particular, a one standard deviation increase in individual forecasts of violence is associated with holding 20% less mobile money and 20% more cash. This suggests that violence may play an important role in preventing the development of formal and digital financial networks.

Apeti and Edoh (2023) look across a large sample of 104 developing economies between 1990 and 2019 to study how mobile money affects tax revenues. They find that mobile money increases tax revenues, both through indirect and direct tax revenues (though the effect on direct tax revenues is larger). For the former, they show that this effect is largely coming from taxes on goods and services. For the latter, they find that these effects are driven by personal and corporate income taxes.

In an ongoing field experiment, Habyarimana & Jack (2016) study an innovative savings and credit product that layers over M-PESA, called M-Shwari (we discuss this innovation in more detail in Section 5). They study M-Shwari in a set of schools in Kenya using a field experiment with two treatment arms: a commitment (locked) savings arm and a regular savings arm (with a cross-randomization of text message reminders to save for education). The intervention was targeted to the transition between primary and secondary school. The authors find an increase in savings and in secondary school enrollments for both groups relative to the control (though the effects are not significantly different across the two groups).

Dalton et al. (2022) run an RCT with small and medium enterprises in Kenya to understand the adoption and impacts of an e-payment technology. This technology is called Lipa na M-PESA and is an “add-on” to the mobile money system in Kenya (M-PESA). It allows users to pay retailers for goods and services without any charge (on the back end, the retailers pay the fees for M-PESA, in a similar way to how Visa and Mastercard operate). They find that this e-payment technology increases the access to digital credit by 50%, and while it reduces the volatility in sales (more so for smaller firms), it does not change revenues or profits directly.

4.3 Mobile credit and banking services

In 2011, Safaricom partnered with a local bank in Kenya, the Commercial Bank of Africa (CBA), to create a new banking product called M-Shwari. Since then, CBA has launched similar products in Tanzania (M-Pawa) and Uganda, Rwanda, and Cote d’Ivoire (MoKash). Similar platforms are provided by Equity Bank

26 In an accompanying policy white paper, Blumenstock et al. (2013) suggest that, when transactions are conducted in an unsafe or unstable environment, firms might benefit from shifting the costs of managing salary payments to mobile operators through mobile money.
Kenya (Equitel) and Kenya Commercial Bank (KCB M-PESA). With M-Shwari, consumers can use their mobile phone to open a bank account at CBA, deposit money in it by transferring balances from M-PESA, withdraw from it via M-PESA, and request a loan. Underlying the loan decision is a credit scoring rule or algorithm based on administrative data on airtime purchases and mobile money transactions (in Uganda, the product is based on a machine-learning credit scoring and credit limit assignment algorithm). By April 2015, over 10 million Kenyans had an M-Shwari bank account, and some, for the first time, had access to formal financial services. A company called Branch offers a slightly different form of mobile credit (with no savings component, as they are not a bank). To make a lending decision, the product asks for permission to scrape the applicant’s phone for data on handset details, GPS info, call and SMS logs, social network data from Facebook, and contact lists. A machine-learning algorithm then uses these data to create a credit score and make a lending decision. Increased usage of the product results in lower interest fees and larger loans. The company Tala provides a very similar product to that of Branch. Similarly, M-KOPA and Angaza (two other systems in Kenya) offer asset-based financing for solar panels where payments on the loan are made from M-PESA.

Suri et al. 2021 study the credit aspect of M-Shwari in Kenya. They find large take up rates of M-Shwari, but that this does not substitute for other sources of credit, so represents a true expansion in the access to credit. In addition, they find that this credit helps consumers deal with health shocks, in particular, and therefore improves resilience. They also find that it increases the propensity to spend on education. Finally, they do not find that it affects any other economic outcomes, like consumption and wealth.

Related, Brailovskaya et al (2021) study digital credit in Malawi and show that they harm consumers’ own perceived well-being. Running a financial literacy program for these consumers increased knowledge and loan demand but not timely payments, which ultimately meant more default due the demand effects.

Riley and Shonchoy (2022) use a field experiment to study how to encourage the adoption of mobile banking services in Ghana—services that use the payment rails of mobile money to lower transaction costs for the consumers. They use Interactive Voice Response (IVR) messages to send information to clients of a rural bank about how to access their bank account at low cost through mobile money. They find this encouragement results in more bank account transactions being conducted through mobile money, with use tripling in the treatment group. This is accompanied by an 11% reduction in visits to the bank branch, saving clients both time and money.

Finally, Bjorkegren et al. (2022) use an RCT to study a digital loan product in Nigeria. They find that receiving a digital loan increases measures of subjective well-being. They also look at whether larger loans have any impacts for those already approved for a loan and do not find this dimension matters for well-being. Neither of these treatments affects other economic outcomes.

27 Although there is little research on the value of mobile money transaction data itself, the transaction data are being used in practice to create credit scores in Kenya. However, recent literature uses mobile phone call data records (CDRs), which are beyond the scope of this review. As an example, Blumenstock (2014) uses call records from Rwanda to predict wealth, and Blumenstock et al. (2015a) show that predictions from records match the Demographic and Health Survey in Rwanda fairly accurately.

28 Cook & McKay (2015) provide more information on M-Shwari. In 2010, under a similar partnership between the mobile operator and a different bank, a bank account called M-KESHO was launched, focusing on promoting individual savings (kesho means tomorrow in Swahili). However, although heralded by many, that product was not widely adopted.
4.4 Macroeconomic impacts of mobile money

There has also been some work on the macroeconomic impact of mobile money systems. Weil et al. (2012) use survey data from Kenya, Tanzania, and Uganda to document the rapid adoption of mobile money between 2006 and 2009 and aggregate data from the Central Bank to look for structural breaks in monetary aggregates that would suggest macroeconomic effects of mobile money. They find evidence of these effects in Kenya, though the velocity of M-PESA, computed based on aggregate data provided by Safaricom, was no higher than that of cash or other monetary aggregates. Similarly, Mbiti & Weil (2011) start by showing that the transaction velocity of M-PESA was four transactions per month in 2008, not much higher than the velocity of cash. The calculated value of outstanding e-float was 3.3 billion shillings in August 2008, also a modest value in comparison to the 85.2 billion shillings of currency (M0) on average between January and June, 2008. Analysing transactions, they conclude that M-PESA is not used as a store of value, with the average account balance of users valued at less than $10 at any point in time. More importantly, they show an effect on the prices of competitors to M-PESA (such as Moneygram and Western Union), with competitors reducing prices on transaction sizes below M-PESA’s thresholds.

Contrary to this, Mas & Klein (2012) find that the velocity of money increases considerably; however, it does not affect money supply base when e-money is based on a safe-deposit-box model. Aron et al. (2015) find little evidence of a link between mobile money and inflation using inflation forecasting models for Uganda. Simpasa et al. (2011) study the same question in Ethiopia, Kenya, Tanzania, and Uganda, highlighting the fact that mobile money could cause an increase in the velocity of money and, thus, the need for regulation to make sure such products do not undermine the effectiveness of monetary policy in these economies.

In a different vein, Jack et al. (2010) show how existing models of monetary theory can be used to think about the impact of mobile money on the operations of the financial system and the subsequent implications for monetary and regulatory policy decisions. Discussing results from household and agent surveys in late 2008, the authors show that the most common problems are agents’ lack of cash and e-money, which would give rise to price discrimination if the price of cash to e-money was not fixed. However, they argue that there may be informal credit or debit relationships between the agents and their coordinating bodies, which can be welfare improving according to the theoretical models.

5 Conclusion: Is mobile money the payments infrastructure of the future?

Although mobile money has been very successful in some countries (for example, by the end of 2014 in Kenya, 96% of households outside Nairobi used M-PESA), and is expanding in a number of other economies, its use remains mostly limited. For example, in Europe and Central Asia, 20% of adults use mobile money to pay for utilities. In Latin America and Caribbean, this number stands at 18%, and in Sub-Saharan Africa at 11% (Demirguc-Kunt et al. 2022). Additionally, in Sub-Saharan Africa, 15% of adults report saving in mobile money accounts – however, this trend is region-specific and was not observed in other regions where saving through mobile money accounts has been minimal (GSMA 2022a). Outside of these applications, mobile money use has been limited to very specific P2P transactions: those that take place over long distances and those that are in places where holding cash is risky. Outside these applications, there has been less success, and the innovation ecosystem around mobile money is still in its early stages.29 Even in Kenya, less than a third of households use the system for paying bills,30 for

29 Mas & Mayer (2011) hypothesise that households need to manage their budgets, savings, and payments in order to better manage their livelihoods, and the services available to the poor rarely combine these needs. They suggest how mobile money may provide an avenue and set of products to do this.

30 For the Safaricom product timeline, the reader is referred to http://www.safaricom.co.ke/mpesa_timeline/timeline.html. In April 2009, Safaricom partnered with Kenya Power to enable customers to pay electricity bills through M-PESA. Starting in October 2010, customers could pay at supermarkets using M-PESA. Similar bill payment services are now provided by many mobile money providers.
receiving payments or wages from an organisation, or for paying for other goods or services – only 5% use it to repay loans. As a result, few P2B, B2B, or G2P interactions take place over mobile money. Although often referred to as a payment system, mobile money cannot fulfil its promise as a genuine payment system unless it can provide these other services at a sensible fee structure.

In the case of G2P transactions, it is important to mention innovations that are working toward delivering such services. In India, along with the universal ID, there has been a rollout of smartcards using a biometrically authenticated payments infrastructure through which government payments can be made to households. Muralidharan et al. (2016) evaluate the impact of these smartcards on beneficiaries of the government’s rural employment guarantee and pension programmes in Andhra Pradesh. They find that payments made using smartcards were faster, more predictable, and involved less leakage than the existing system, especially for the employment programme. These effects resulted mostly from a reduction in over-reporting and quasi-ghost workers. The reductions in leakages as well as reduced costs to beneficiaries of collecting payments make smartcards highly cost effective. In an accompanying study, Muralidharan et al. (2018) look at the general equilibrium effects of the smartcards being used in the employment programme. They find an increase in income, 90% of which came from private sector earnings (the remainder came from increases from the programme itself).

Although the literature on mobile money is growing, research on the innovations that are already building on mobile money has been lagging. In the spirit of spurring new research ideas, I outline some of the more recent product innovations that have built on existing mobile money systems and encourage researchers to catch up with the innovations. Whether these innovations ultimately deliver improvements in livelihoods to households is still an open question. 32

In 2013, Safaricom launched Lipa-na-M-PESA, a product that encourages retail payments over the M-PESA platform. Before this, the transaction fees on M-PESA, as on all other mobile money systems (see Figure 4), were too high for basic retail payments, especially because the incidence of those fees falls on the end consumer and not on the retailer. Lipa was an attempt to lower these transaction fees to 1% of the transaction size, which was then further lowered to 0.5% in March 2017 for transactions above KShs 200 ($2) and 0% for transactions less than KShs 200. The retailer can choose to pay it or pass on the fee to the consumer.33 In practice, there has been a mix of retailers choosing to pay it and choosing to pass it on. Regardless, given the size of many retail transactions, this fee was too high for both consumers and retailers, though the changes in March 2017 may make a marked difference.

In March 2017, the Kenyan Treasury launched a pilot version of a digital government bond called M-Akiba. It is a 3-year infrastructure bond that is purchased over mobile phones. The backend system is built to allow individuals to use the KYC behind their mobile money accounts to open a Central Depository System (CDS) account through their mobile phone in a few keystrokes. Individuals can then actively purchase and trade these bonds on the underlying digital platform (which links to the bond exchange). These bonds come with a coupon rate payout of 10% per annum, paid every 6 months. To make this happen, Kenya passed legislation that lowered the minimum investment in treasury bonds to KShs 3,000 ($30) from KShs 100,000. The government also allowed for a CDS account to be opened via a mobile phone and allowed individuals to use mobile money to purchase and trade treasury bonds over a mobile phone. M-Akiba will serve as a positive real return savings instrument for low-income households, hence the name: M for mobile and akiba meaning savings in Swahili. There have been a couple of small bond launches over this platform, but nothing more recently and nothing significant, relative to the government’s revenues.

In late 2015, Safaricom made available an application programming interface (API) to allow for

31 One nongovernmental organisation, Give Directly, operates in East Africa using mobile money to distribute cash transfers, though they do not yet reach anywhere near the scale of a G2P programme.

32 Kendall et al. (2011) look at how some other market players use M-PESA as a platform to integrate more financial services using results from phone and Internet surveys.

33 This is in contrast to Visa and Mastercard, where the incidence of the fee is always entirely on the retailer.
programmatic access to the M-PESA platform over the web, with a second generation launched a few years later. APIs are a convenient approach for businesses to expose some of their core assets and to enable the emergence of a developer community around these assets. APIs come with instructions for developers on how to access them, but also with terms and conditions, a pricing model, and other business contractual agreements. Exposing APIs has become a standard approach to creating B2B interactions over the Internet without tedious human business development transactions in the way. Such APIs are now common use amongst mobile money companies, especially when integrating with bank accounts and credit wallets.

The universal access to M-PESA presents a tremendous opportunity for an API model and could accelerate the fintech market in East Africa rapidly. The value of global fintech investment in 2015 was $22.3 billion (Skan et al. 2016), with the United States having the largest sector, receiving $4.5 billion in new funding in 2015. China had nearly $2 billion, India $1.65 billion, and Germany $770 million. Whereas the growth in investments in Asia-Pacific have been dramatic (a fourfold growth between 2014 and 2015), there has been little investment in Sub-Saharan Africa, where mobile money systems have no doubt been the most popular (Skan et al. 2016). Given that Sub-Saharan Africa has some of the poorest economies in the world, it may also have the economies where the returns to fintech investments are the highest, as illustrated by the case of mobile money.

Democratising access to a payment system such as M-PESA might well be the missing link between the current situation and potential significant increases in investments in fintech in the region. The big question is: what can we learn from these nascent innovations that can change the gestalt of payments and financial markets in developing economies? Although mobile money may seem revolutionary, aside from the dramatic adoption, it is far from revolutionising the role of financial markets or cash in these economies. Mobile money has been, in most cases, a cash-in cash-out system, with the majority of transactions being the purchase of airtime and small P2P remittances, generally once a month. In the success cases, cash has come into the financial system, and the flow through the system has often amounted to a sizeable fraction of GDP. However, these economies are not to be mistaken for cashless when compared, for example, to Sweden, where cash makes up only 2% of transactions (see Bank Int. Settl. 2015). Similarly, their financial flows are tiny when compared to the US financial system, which trades more than 60 times its GDP a day just through stocks, bonds, and derivatives. The benefits of cashless economies, especially in low-resource environments, remain an open question. Should these economies become cashless or close to cashless, and, if so, how will that be accomplished? Will the banking system be the primary venue for this transformation, and, if so, what sets of products and services will be needed to accomplish this? What will encourage financial market transformation in these economies? Will mobile money be the first stepping stone toward new financial markets and transactions in these economies? Will it encourage broader, better-integrated, secure platforms for transactions? There is a lot still to learn.

References

34 For more on APIs and M-PESA’s initial API, the reader is referred to the Bankable Frontiers Association (Bank. Front. Assoc. 2016) and Morawczynski (2015). For more on the operational aspects of M-PESA’s API from Safaricom, the reader is referred to http://www.safaricom.co.ke/business/corporate/m-pesa-payments-services/m-pesa-api.

35 For more information on APIs and their standardization, the reader is referred to http://oldwww.acm.org/tsc/apis.html; Meyer (2016) provides more information on APIs in telcos.

Bankable Frontiers Association (2016), “Implications, insights and guidance on use of Open Application Programming Interfaces (APIs) by financial services providers in emerging economies”, FSD Kenya.

Brailovskaya, V, P Dupas, and J Robinson (2021), "Is digital credit filling a hole or digging a hole? Evidence from Malawi" (No. w29573), National Bureau of Economic Research.

Meyer, D (23 May 2016), "API design opening new opportunities for the telecom space", RCR Wireless News.

Morawczynski O (30 October 2015), "Just how open is Safaricom's open API?" CGAP blog.

Muralidharan, K, P Niehaus and S Sukhtankar (2017), "General equilibrium effects of (improving) public employment programs: Experimental evidence from India" (No. w23838), National Bureau of Economic Research.

Pople A, R Hill, S Dercon and B Brunckhorst (2021) "Anticipatory cash transfers in climate disaster response." Centre for Disaster Protection.

Riley, E and A Shonchoy (2022), "A National Information Campaign Encouraging Financial Technology Use in Ghana" (No. 2206). Florida International University, Department of Economics.

